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Diluted Bitumen Affects Multiple Physiological Systems
in Sockeye Salmon (Oncorhynchus nerka) Embryo
to Juvenile Life Stages
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Abstract: An understanding of the risks associated with diluted bitumen (dilbit) transport through Pacific salmon habitat
necessitates the identification and quantification of hazards posed to early life stages. Sockeye from the embryo to juvenile
stage (8 months old) were exposed to four concentrations of the water‐soluble fraction of Cold Lake dilbit (summer blend;
concentrations of 0, 13.7, 34.7, and 124.5 μg/L total polycyclic aromatic compounds). Significant mortality (up to 18% over
controls) only occurred in the embryo to swim‐up fry stage. Impaired growth was seen in the alevin, swim‐up, and juvenile
stages (maximum reduction 15% in mass but not fork length). Reductions in both critical (maximum 24% reductions) and
burst (maximum 47% reductions) swimming speed in swim‐up fry and juveniles were seen. Alterations in energy substrate
reserves (reductions in soluble protein and glycogen content, elevations in whole‐body lipid and triglyceride levels) at all
stages may underlie the effects seen in swimming and growth. Dilbit exposure induced a preexercise physiological stress
response that affected the recovery of postexercise biochemistry (cortisol, glycogen, lactate, triglyceride concentrations).
The transcript abundance of the cytochrome P450 1A gene (cyp1a) was quantified in alevin head regions (containing the
heart) and in the hearts of swim‐up fry and juveniles and showed a concentration‐dependent increase in the expression of
cyp1a at all life stages. Environ Toxicol Chem 2022;41:1937–1949. © 2022 SETAC
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INTRODUCTION
Canada has the world's third largest crude oil reserves,

which are estimated at 1.67 trillion barrels, with 96% of proven
reserves contained in oil sands deposits located in the Western
Canada Sedimentary Basin (Natural Resources Canada, 2020).
The extraction of bitumen from the oil sands has increased
exponentially over the past decade, with extraction rates pro-
jected to increase from the current 2.8 to 4.5 million barrels/day
by 2040 (Canada Energy Regulator, 2019). Raw bitumen nat-
urally has high viscosity and density; extracted bitumen is
processed and diluted with other, lighter petroleum products
(e.g., natural gas condensate or synthetic oil) to facilitate
transportation via pipeline (Dew et al., 2015). Diluted bitumen
(dilbit; 20%–30% natural gas condensate, 70%–80% bitumen) is
the most frequently transported bitumen product in currently
employed pipeline networks across North America (Crosby

et al., 2013; Environment and Climate Change Canada et al.,
2013). To cope with increasing global demand for petroleum
products, multiple pipeline projects have been proposed in
recent years, aiming to increase the exports of Canadian oil
sands products (Levy, 2009; National Energy Board [NEB],
2019). The construction of new pipeline and the expansion
of existing infrastructure are expected to provide convenient
and cost‐efficient means for transporting dilbit from remote
production sites to coastal regions for refining and eventual
overseas shipping (NEB, 2019). The anticipated increase in
dilbit transportation (e.g., pipeline, tanker, and rail) raises
concerns regarding the potential for a spill event following a
pipeline failure or a tanker accident.

Different petroleum products will exhibit unique environ-
mental fate/behaviors and environmental impacts if spilled;
limited evidence with dilbit indicates that releases will result in
challenging postspill cleanup and habitat recovery (Alsaadi,
Hodson, & Langlois, 2018; Dew et al., 2015). For example, it is
estimated that nearly 1 million L (up to 30%) of the residual oils
from the Kalamazoo River dilbit spill (2010) are associated with
sediments and have remained in the river system for years
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following cleanup efforts (US Environmental Protection Agency,
2013); this suggests that investigations utilizing sublethal and
chronic exposure scenarios are needed (Alderman et al., 2018).

Dilbit is a mixture of various petrogenic hydrocarbons (e.g.,
benzene, toluene, ethylbenzene, xylenes [BTEX], polycyclic
aromatic compounds [PACs], and naphthenic acids, among
others) with demonstrated toxicity to fish. Acute and sublethal
effects following exposure to other crudes or their constituents
include developmental defects at early life stages (ELS), im-
paired growth, reductions in reproductive capacity, changes in
behavior, alterations in biochemistry and gene expression,
suppressed immune function, genetic damage, and endocrine
disruption (Dupuis & Ucan‐Marin, 2015; Kennedy, 2014;
National Academies of Sciences, Engineering, and Medicine
[NASEM], 2016).

Limited studies exist on the toxicity of dilbit to fish species
(Dupuis & Ucan‐Marin, 2015; NASEM, 2016); therefore, un-
certainties regarding the hazards associated with this complex
mixture exist. Constituent profiles can vary greatly between
products and blends, leading to reservations in predicting
dilbit toxicity from data that exist for other crude oils (NASEM,
2016). Early studies on dilbit toxicity focused on embryonic and
larval life stages, where effects tend to be greatest in fish
exposed to conventional crude oils (see Alsaadi, Madison et al.,
2018; Madison, Hodson, & Langlois, 2015; Madison et al.,
2017; McDonnell et al., 2019; Philibert et al., 2016). More
recent studies investigating effects in older life stages at risk of
dilbit exposure support the need for a deeper appreciation of
life‐specific responses (e.g., fry and juveniles; Alderman et al.,
2018, 2020; Alderman, Dindia et al., 2017; Alderman, Lin et al.,
2017; Avey et al., 2020; Lin et al., 2020, 2021).

Freshwater and estuarine salmon habitats are at risk be-
cause of proposed and existing pipeline and rail routes, as well
as the use of marine tanker terminals in the Canadian Pacific
Northwest (Levy, 2009; Raincoast Conservation Foundation,
2018). As one of the most productive salmon migration routes
in the world, the Fraser River watershed and its estuary serve as
vital spawning and nursery habitat for all five species of Pacific
salmon (Henderson & Graham, 1998; Labelle, 2009). There is
an increasing body of evidence suggesting that dilbit exposure
can negatively affect the survival, early development, and
critical physiological systems of Pacific salmon at extremely low
environmental concentrations. These effects include delayed
hatching time, mortality during embryonic development, de-
formities, impairment of growth, and alteration of body com-
position (Alderman et al., 2018). Older ELS are also affected by
dilbit exposure. For example, exposed 1+‐year‐old sockeye
exhibit altered gene expression, decreased swimming ability,
as well as alterations in cardiac tissues and the plasma
proteome (Alderman, Dindia et al., 2017; Alderman, Lin et al.,
2017). The potential for longer‐term exposures to dilbit
following a spill in salmon habitat and the growing evidence of
pronounced effects in salmon were the impetus for the present
study. In the present study, the effects of a chronic dilbit ex-
posure on developing sockeye through several life stages from
the embryo to the juvenile stage were investigated using a
suite of endpoints known to have direct relevance to salmon

survival and performance (survival, growth, biochemistry, gene
expression, swim performance, and exercise recovery).

MATERIALS AND METHODS
Fish

Sockeye gametes were obtained from the Upper Pitt
River Hatchery (Fisheries and Oceans Canada) and fertilized
according to standard procedures (Ontario Ministry of Natural
Resources, 2009). Embryos were incubated in heath trays
(MariSource; 372 embryos per tray; mean mass 0.24± 0.11 g
[mean± standard deviation]) supplied with dechlorinated mu-
nicipal water (flow rate 6 L/min; dissolved O2> 95% saturation,
hardness 6.12mg/L CaCO3, dissolved organic carbon< 1mg/L,
pH 7.0) at 11.3 °C in the dark until the swim‐up fry stage (no
visible external yolk sac). Mortality was recorded daily under
red light, and dead embryos were immediately removed from
trays. Swim‐up fry were collected from rearing trays and
transferred to 250‐L fiberglass tanks supplied with dechlori-
nated water at 13 °C (flow rate 7.5 L/min and 12:12‐h light:dark
photoperiod). Fry were fed 5% body weight/day commercial
salmonid feed (Skretting Canada), which was increased weekly
according to a growth equation that included a feed con-
version efficiency of 20% (Meador et al., 2006) until fish were
8 months of age (juveniles). The care and use of all fish were
approved by the University Animal Care Committee at Simon
Fraser University following Canadian Council on Animal Care
guidelines (1315B‐20).

Exposure
The water‐soluble fraction of dilbit was generated as pre-

viously described (Alderman, Dindia et al., 2017; Kennedy &
Farrell, 2005). In brief, Siproax® ceramic beads (Aquatic
Eco‐Systems) were soaked (except controls) in unweathered
Cold Lake Blend summer dilbit (COOGER, DFO) for 24 h
and then placed into polyvinyl chloride columns (16 cm
diameter × 80 cm length) supplied with an upward‐directed
continuous flow of dechlorinated municipal water (6 L/min).
Varying the number of beads/column provided four different
water‐soluble fraction concentrations (in duplicate); columns
were “recharged” every 14 days with newly soaked beads.
Water containing the water‐soluble fraction of dilbit flowed into
500‐L fiberglass header tanks and was then distributed into
heath stacks. Embryos were exposed to dilbit in duplicate
heath stacks immediately postfertilization and continued until
fish reached the swim‐up stage. At this stage, fish were trans-
ferred into 200‐L fiberglass tanks (n= 200 fish in each duplicate
tank) supplied with dilbit‐water‐soluble fraction water and ex-
posed for a further 90 days until fish were 8 months of age
(8‐month total exposure). The detailed experimental design is
depicted in Figure 1.

Water samples were collected from duplicate header tanks
at 0, 7, and 14 days after initiation of water‐soluble fraction
generation and analyzed for individual PACs using gas
chromatography–mass spectrometry, as previously described
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(Alderman, Dindia et al., 2017). Individual PAC concentrations
were measured by Axys Analytical Services following standard
procedures. All samples were spiked with deuterated surrogate
standards prior to dichloromethane extraction and cleanup
with silica column chromatography. Low‐resolution mass
spectrometry using an RTX‐5 capillary gas chromatography
column operated in the electron impact ionization mode using
multiple ion detection was used, acquiring at least one char-
acteristic ion for each target analyte and surrogate standard.
Reporting limits for individual compounds ranged from 0.13 to
1.13 ng/L (mean 0.42 ng/L), and the mean percentage recovery
was 100.3%. Concentrations of target PACs were calculated
using the isotope dilution method of quantification and ex-
pressed as percentage of total PAH (Alderman, Dindia
et al., 2017).

Tissue collection
Developing alevins (n= 35–94 days postfertilization [dpf]),

swim‐up fry (n= 44–147 dpf), and juveniles (n= 44–237 dpf)
were randomly sampled from each exposure group (and
replicate tanks), euthanized with buffered tricaine mesylate
(MS‐222; 1 g/L), and weighed and measured for length. For
biochemical analysis, a subset of these fish (n= 16–20/
treatment) were frozen in liquid N2 and then transferred to
−80 °C until analysis for whole‐body lipid and triglyceride
content. For gene transcript analysis, the head region of alevins
(bisected at the rostral boundary of the yolk sac and perpen-
dicular to the body axis) or the isolated hearts (fry and juveniles)
were individually frozen in liquid N2 and stored at −80 °C for
reverse‐transcription quantitative polymerase chain reaction
(RT‐qPCR) analysis (n= 8/developmental stage, n= 8/treatment
group, n= 4/replicate tank).

Swim tests
Critical swimming speed (Ucrit) and burst swimming speed

(Uburst) tests (Farrell, 2008; Osachoff et al., 2014) were per-
formed for swim‐up fry and juveniles (n= 10 from each treat-
ment) using an isolated/blacked‐out mini–swim tunnel system
(Loligo® Systems). The swim tunnel system (a 1.5‐L cylindrical
glass chamber submerged inside a reservoir) was temperature‐

regulated by a custom chilled bath circulator, and dissolved
oxygen was maintained at >95% by constant aeration. Fish
were first acclimated for 20min at a water velocity of 1.5 body
lengths per second (BL/s) before the swim tests. Water velocity
was then increased by 1.5 BL/s every 20min until fish were
exhausted (Farrell, 2008). The Uburst test was initiated at a water
velocity of 1.0 BL/s (Farrell, 2008; Nendick et al., 2009), rapidly
increased to 2 BL/s over a 1‐min interval, and subsequently
increased by 0.5 BL/s every 1min. Both tests were complete
when exhausted fish were inactive on the rear baffle for over 2 s
and would not resume swimming after a brief decrease in water
velocity. Fish were immediately removed from the tunnel
and euthanized in buffered MS‐222, and wet weight (grams)
and fork length (centimeters) were recorded. Values for Ucrit

and Uburst were calculated according to Farrell (2008). The
cross‐sectional area of all swim‐tested fish was found to be
<10% of swim tunnel cross‐sectional area, and fish density was
<0.2 g/L; therefore, Ucrit and Uburst values were not corrected
for solid blocking effects (Bell & Terhune, 1970). Euthanized
Ucrit‐tested fish were frozen in liquid nitrogen and immediately
transferred to −80 °C for postexercise body composition
analysis, as described below (see Body composition).

Biochemical measurements
Whole‐body lipid content was measured using a standard

protocol (Folch et al., 1957). Preweighed fish were thawed on
ice and minced into pieces in envelopes (Whatman filter paper)
that were then sealed and saturated in a chloroform:methanol
(2:1) mixture (solvent:tissue 20:1), incubated for 20min in a
glass container, and shaken at 30 rpm. Samples were then
washed with chloroform and dried in an oven (60 °C) for 24 h.
Total‐body lipid content of each individual fish was calculated
by subtracting the sample's original wet weight by the net
weight of the dried sample.

Total soluble protein content was quantified in preweighed
whole fish that were thawed on ice and homogenized in nine
volumes of lysis buffer (0.5M Tris‐HCl and 0.1mM ethyl-
enediaminetetraacetic acid at pH 8) using a Mixer Mill ho-
mogenizer (model MM 300; Qiagen; Cassidy et al., 2016).
Crude homogenates were centrifuged at 13,000g at 4 °C for
60min, and the soluble protein content in supernatants was

FIGURE 1: Schematic of the experimental design. ELS= early life stage; WSF=water‐soluble fraction; dpf= days postfertilization.
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measured using a Bradford protein assay kit with bovine serum
albumin as the standard (catalog no. 5000002; Bio‐Rad).

For whole‐body pre‐ and postexercise cortisol, glycogen,
triglyceride, and lactate concentrations, preweighed alevin or
fry were thawed on ice and homogenized in 0.2M sodium
citrate buffer at pH 5 (catalog no. 200‐675‐3; EMD Chemicals)
using a Tissue Tearor (Fisher Scientific). Each crude homoge-
nate sample was aliquoted into separate microcentrifuge tubes
and stored at −80 °C until subsequent analysis. The glycogen
concentration was determined following a standard protocol
(Weber et al., 2008) using Type IX bovine liver glycogen as a
standard (C940M53; Sigma‐Aldrich). The whole‐body trigly-
ceride concentration was determined following the microplate
spectrophotometric assay protocol as described in Weber et al.
(2003). Whole‐body lactate content of each fish was de-
termined using a commercial colorimetric assay kit (catalog no.
120001400P; Eton Bioscience) performed according to the
manufacturer's protocol. Total cortisol concentration was
quantified using a commercial enzyme‐linked immunosorbent
assay kit (catalog no. EA65; Oxford Biomedical Research;
McPhee & Janz, 2014). All colorimetric assays were performed
in duplicate using an Epoch™ 2 microplate spectrophotometer
(Bio‐Tek) and a Corning® 96‐well microplate (Greiner Bio‐One
International).

RT‐qPCR analysis
Transcript abundances of cytochrome P450 1a (cyp1a;

Phase I biotransformation) and ribosomal protein L8 (rpl8;
housekeeping gene) were quantified in alevin head regions
(containing the heart) and in the hearts of swim‐up fry and
juveniles following standard quality control guidelines (Bustin
et al., 2009) and using total RNA extraction, complementary
DNA synthesis, and RT‐qPCR methods exactly as previously
described (Alderman et al., 2018). Primer sequences were
cyp1a (F: tcatcaacgacggcaaga, R: gttcaccaagcccaacag, 110%
efficiency) and rpl8 (F: ttggtaatgttctgcctgtg, R: gggttgtggga-
gatgactg, 103% efficiency). Data were normalized to the
abundance of the stably expressed reference gene, rpl8.

Statistical analysis
No statistically significant tank effect was found (using either

one‐factor or two‐factor analysis of variance [ANOVA]) in which
tank was included as a random factor); therefore, data from
replicate tanks were pooled for all analyses. Mortality, body
composition measures (including condition factor [mass/
length3]), and swim test data were analyzed using one‐factor
ANOVA and Tukey's multiple comparison test (α= 0.05). The
preexercise and postexercise biochemical data from different
treatment groups were combined and compared using two‐
factor ANOVA followed by Tukey's multiple comparison test
(α= 0.05). Differences in transcript abundances were de-
termined using one‐factor ANOVA and Tukey's multiple com-
parisons test, and the relative abundance of cyp1a in the hearts
of swim‐up fry and 8‐month‐old juveniles was compared with a

two‐factor ANOVA and Sidak's multiple comparisons test
(n= 8; α= 0.05).

RESULTS
Water chemistry

Water samples collected (two composite samples per
concentration) at 0 days confirm the presence of PAC in
experimental tanks supplied with water‐soluble fraction of
dilbit, with initial total PAC (TPAC) values ranging from
0.2 µg/L (control) to 13.7 µg/L (low) to 34.7 µg/L (medium)
to 124.5 µg/L (high). The initial TPAC concentrations in water‐
soluble fraction of dilbit exposures are used hereafter to

(A)

(B)

FIGURE 2: Cumulative mortality of embryos exposed to dilbit. The
initial total polycyclic aromatic compound concentrations for each
water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and
124.5 (high) µg/L. Time of exposure was (A) 147 days for embryo to
swim‐up fry and (B) 90 days for swim‐up stage to 8‐month‐old juveniles.
One‐factor analysis of variance and Tukey's multiple comparison test
were used to test for significant differences between water‐soluble
fraction treatment groups. Bars that do not share a common letter are
statistically different (p< 0.05).
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TABLE 1: Wet weight, fork length, and Fulton's condition factor of fish exposed to water‐soluble fraction of Cold Lake Blend dilbit

Life stage Treatment Body mass (mg) Fork length (mm) Condition factor n

Alevin Control 182.9± 2.0A 22.6± 0.2A 1.61± 0.03A,B 70
Low 184.1± 2.1A 22.2± 0.1A 1.70± 0.03A 70

Medium 178.9± 1.9A,B 22.4± 0.1A 1.60± 0.02B 70
High 173.3± 2.4B 22.3± 0.2A 1.58± 0.03B 70

Swim‐up fry Control 161.9± 0.9A 28.8± 0.1A 0.68± 0.003B 227
Low 163.7± 0.7A 28.4± 0.1B 0.72± 0.003A 179

Medium 140.2± 0.9B 27.0± 0.1C 0.72± 0.004A 177
High 137.4± 1.6B 26.9± 0.1C 0.71± 0.006A 92

Juveniles Control 673.8± 6.9A 39.7± 0.2A 1.08± 0.008A 368
Low 651.3± 6.9A 39.3± 0.2A 1.08± 0.008A 373

Medium 561.5± 6.8B 39.4± 0.2A 0.92± 0.009B 367
High 583.8± 7.1B 39.6± 0.2A 0.94± 0.008B 363

The initial total polycyclic aromatic compound concentrations for each water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and 124.5 (high) µg/L. Time of
exposure was 147 days for embryo to swim‐up fry and 90 days for swim‐up stage to 8‐month‐old juveniles. Data are means± standard error for n= 20 fish. Treatments
that do not share a common letter are statistically different (p< 0.05).

(A)

(C) (D)

(B)

FIGURE 3: Cytochrome P450 1a (cyp1a) expression in (A) alevin head regions (50% yolk) and isolated whole hearts of (B) swim‐up fry and (C)
8‐month‐old juveniles exposed to various concentrations of dilbit. The initial total polycyclic aromatic compound concentrations for each water‐
soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and 124.5 (high) µg/L. Expression was normalized to the housekeeping gene rpl8.
Within each life stage, data are expressed as fold‐change from unexposed controls, and boxes that do not share a common letter are significantly
different (one‐way analysis of variance [ANOVA] and Tukey's test, n= 8; p< 0.001). The mean abundance of cyp1a in swim‐up fry versus juveniles at
each concentration is shown in (D), with significant differences between life stages indicated with an asterisk (two‐way ANOVA and Sidak's post hoc
test, n= 8; pinteraction= 0.013). rpl8= ribosomal protein L8.

Effects of diluted bitumen on young sockeye salmon—Environmental Toxicology and Chemistry, 2022;41:1937–1949 1941
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designate treatment groups. In this system, TPAC concen-
trations decreased by 50%–70% between 0 and 12 days and
then changed very little between 12 and 25 days (Alderman,
Dindia et al., 2017; Lin et al., 2020). Component breakdown
for TPAC shows that smaller and more volatile hydrocarbons
(e.g., naphthalenes) predominate initially, with larger PACs

(e.g., phenanthrenes) becoming relatively more abundant
with time (Lin et al., 2020).

Mortality and growth
Cumulative mortalities in embryos and swim‐up fry in

the medium and high water‐soluble fraction treatments were
significantly higher (medium vs. control, p= 0.0482; high vs.
control, p< 0.01) than in controls; however, no significant
mortality occurred in older fish from exposure (p> 0.05;
Figure 2). Body mass was significantly lower in alevins exposed
to the highest concentration compared with controls, and at
the swim‐up stage significantly lower body mass was seen in
both the medium and high treatment groups (medium and
high both p< 0.01), a trend which continued to the juvenile
stage (Table 1). Significantly reduced length was only seen
in water‐soluble fraction‐exposed swim‐up fry (Table 1).
Condition factor was marginally but significantly higher in
swim‐up fry and lower in juveniles at the higher two concen-
trations compared with controls (Table 1).

Molecular responses
There was a concentration‐dependent increase in transcript

abundance of cyp1a at all stages examined, with maximal re-
sponses of 72‐fold (50% yolk sac; Figure 3A), 9‐fold (swim‐up
fry; Figure 3B), and 162‐fold (8‐month‐old juveniles; Figure 3C)
relative to unexposed controls. The apparent low response in
swim‐up fry, however, is relative to an already high background
expression of cyp1a. Specifically, expression of cyp1a in the
hearts of unexposed control swim‐up fry was 32‐fold greater
than in the hearts of unexposed control juveniles, and the peak
response observed in fish exposed to the highest concen-
tration of dilbit was also relatively higher in swim‐up fry hearts
(Figure 3D).

Body composition
Developing alevins exposed to dilbit exhibited increased

total‐body lipid and triglyceride concentrations and a reduced
total soluble protein content compared with controls (Figure 4);
whole‐body lipid contents in the medium and high treatment
groups were 1.9‐fold and 2.2‐fold higher than in controls
(p= 0.048, p= 0.015), and triglyceride levels in these two
groups were elevated by 1.6‐fold and 2.0‐fold, respectively
(p= 0.034, p< 0.01). Lower protein content (35%, high vs.
control, p= 0.025; 27%, medium vs. control, p< 0.01, re-
spectively) was also seen. Swim‐up fry in the two higher treat-
ment groups exhibited an increased total lipid content, 2.0‐fold
and 2.2‐fold higher than controls (Figure 5; medium vs. control,
p< 0.01; high vs. control, p< 0.01) as well as lower whole‐body
soluble protein levels (medium vs. control, by 33.6%,
p= 0.0241; high vs. control, 42.1%, p< 0.01; Figure 5). Juve-
niles in the high exposure group had a higher lipid content
(1.7‐fold, p< 0.01) and lower whole‐body soluble protein levels

(A)

(B)

(C)

FIGURE 4: Whole‐body total (A) lipid, (B) triglyceride, and (C) protein
content in alevins exposed to dilbit. The initial total polycyclic aromatic
compound concentrations for each water‐soluble fraction were 0.2
(control), 13.7 (low), 34.7 (medium), and 124.5 (high) µg/L. Within each
plot, indicates mean for n= 20 fish; boxes that do not share a
common letter are statistically different (p< 0.05).
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(by 27%) in the high treatment group (p= 0.048; Figure 5)
compared with controls.

Swim performance
Values of Ucrit and Uburst were affected by exposure in both

swim‐ups and juveniles. Values of Ucrit for swim‐up fry in the
medium and high treatments were 20% lower than those of
controls (Figure 6; medium vs. control, p< 0.01; high vs. con-
trol, p< 0.01); for juveniles, Ucrit was reduced by 22.8% com-
pared with controls in the high treatment group (p< 0.01).
Values of Uburst were decreased in swim‐up fry in the medium
and high treatments (26% and 39%, respectively) compared
with controls (Figure 6; medium vs. control, p< 0.01; high vs.
control, p< 0.01). For the juveniles, the medium and
high groups exhibited decreased Uburst by 16.3% and 22.2%,
respectively, compared with controls (p< 0.01, p< 0.01).

Pre‐ and postexercise biochemistry
Preexercise (baseline) whole‐body cortisol concentrations in

swim‐ups and juveniles were higher (range 1.7‐ to 2.7‐fold) in

fish exposed to the medium and high treatment groups com-
pared with controls (p< 0.01, p= 0.037; Figure 7). Fish that
underwent the Ucrit test exhibited a significant elevation in
whole‐body cortisol concentrations in controls (2.1‐fold,
p= 0.049) and the low treatment group (2.2‐fold, p= 0.023)
in swim‐up fry. In contrast, postexercise cortisol concentrations
in fish from the medium and high treatments were not sig-
nificantly different from preexercise baseline values. This lack
of an exercise‐induced cortisol increase was consistently ob-
served in juveniles in all three dilbit treatment groups
(Figure 7).

Preexercise body glycogen reserves were lower in fish in the
higher treatment groups compared with controls (medium vs.
control, p< 0.01; high vs. control, p< 0.01; Figure 7). The Ucrit

test resulted in significant reductions in total‐body glycogen
content in both control and water‐soluble fraction‐exposed
swim‐ups and juveniles; however, in juveniles, exposure to
the highest concentration further reduced glycogen stores
compared with controls (p< 0.01; Figure 7).

For both swim‐ups and juveniles, preexercise lactate levels
of exposed fish were not significantly different from those of
controls (p> 0.05; Figure 8). For both swim‐up fry and juve-
niles, significant increases in whole‐body lactate levels were

(A)

(B) (D)

(C)

FIGURE 5: Total lipid content (A,B) and total protein content in (C,D) swim‐up fry and juveniles exposed to dilbit. The initial total polycyclic
aromatic compound concentrations for each water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and 124.5 (high) µg/L. Within each
plot, indicates mean for n= 16 fish; boxes that do not share a common letter are statistically different (p< 0.05).
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observed following the Ucrit trial in both control and exposed
fish (p< 0.01; Figure 8). For both swim‐up fry and juveniles,
only fish exposed to the highest water‐soluble fraction had
higher postexercise lactate when compared with the controls
(p= 0.0225, p= 0.0193).

Whole‐body triglyceride levels in preexercised swim‐ups
were significantly higher in the medium and high treatment
groups (p< 0.01 and p< 0.01, respectively) and in the high
treatment group in juveniles compared with controls (p< 0.01,
Figure 8). Exercise caused significant decreases in control and
low treatment swim‐ups (p= 0.0189, p= 0.025) and in juveniles
(p= 0.0484, p= 0.0275). For both swim‐up fry and juveniles,
fish exposed to the highest concentration of water‐soluble
fraction did not exhibit a significant decrease in whole‐body
triglyceride following exhaustive swimming exercise as was
seen in other groups (p> 0.05; Figure 8).

DISCUSSION
Evidence is growing that Pacific salmon ELS, particularly

developing embryos and alevins, are more sensitive to dilbit

than other species and that tolerance in salmon increases with
age. Dilbit‐induced lethality in developing sockeye was life
stage–dependent; embryos through the swim‐up stage were
most sensitive with mortality occurring at TPAC as low as
34.7 µg/L. Alderman et al. (2018) reported higher sensitivity,
with mortality in sockeye embryos at TPAC concentrations as
low as 4 µg/L; however, at a similar concentration (35 µg/L
TPAC), overall mortality was similar (8% vs. 13%). No mortality
was seen in dilbit‐exposed 1+‐year sockeye parr exposed to
concentrations between 3.5 and 66.7 µg/L (Alderman, Dindia
et al., 2017). Developing pink salmon (Oncorhynchus gorbu-
scha) embryos exhibited mortality at a similar total polycyclic
aromatic hydrocarbon (TPAH) range (18–48 µg/L) using a similar
dosing method (Heintz et al., 1999). In contrast, larval fathead
minnow (Pimephales promelas) and inland silverside (Menidia
beryllina) exhibited no acute lethality at TPAH of 8–40 µg/L
(Barron et al., 2018). Low lethal toxicity has also been reported
in zebrafish (Danio rerio, 28 µg/L), fathead minnow, Japanese
medaka (Oryzias latipes), and yellow perch (Perca flavescens; at
TPAH<100 µg/L) during embryonic development (Alsaadi,
Madison et al., 2018; Madison, Hodson, & Langlois, 2015;

(A) (B)

(C) (D)

FIGURE 6: Critical and burst swimming speed of (A,B) swim‐up fry and (C,D) juveniles exposed to dilbit. The initial total polycyclic aromatic
compound concentrations for each water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and 124.5 (high) µg/L. Within each plot,
indicates mean for n= 10 fish; boxes that do not share a common letter are statistically different (p< 0.05). Ucrit= critical swimming speed;
Uburst= burst swimming speed; BL= body length.
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Madison et al., 2017; McDonnell et al., 2019; Philibert
et al., 2016).

Body mass, but not overall length, was reduced in sockeye
at all life stages when exposed to dilbit; and marginal incon-
sistent effects were seen in condition factor. Similar results
were reported for various petroleum products in other
salmonid species (Atlantic salmon, Salmo salar [Vignier et al.,
1992]; cutthroat trout, Oncorhynchus clarkii [Woodward
et al., 1983]; rainbow trout, Oncorhynchus mykiss [Lockhart
et al., 1996]; pink salmon [Wang et al., 1993]; and Chinook
salmon, Oncorhynchus tshawytscha [Meador et al., 2006]).
Multiple mechanisms have been suggested to underlie growth
reductions, including the suppression of feeding behavior and
decreases in food conversion efficiency (Moles & Rice, 1983;
Vignier et al., 1992), physiological stress (Kennedy & Farrell,
2005, 2006; Kochhann et al., 2015), and elevations in metabolic
rate (dos Santos et al., 2006; Klinger et al., 2015).

The availability and utilization of critical energy substrates
have direct bearing on the success of embryonic development
and the growth of fish (Srivastava & Brown, 1991). Dilbit‐induced
alterations in whole‐body lipid, triglyceride, glycogen, and pro-
tein concentrations at all stages suggest that disturbances in lipid
and protein metabolism or their utilization likely underlie the al-
terations in mass, length, and calculated condition factor seen at
the whole‐animal level. Altered lipid stores and reductions in free
protein levels have been reported in salmon alevins exposed to
dilbit and are suggested to underlie delayed development and

shortened body lengths (Alderman et al., 2018). Similarly, the
transient exposure of polar cod (Boreogadus saida) to North
Slope crude oil during embryogenesis caused significant ele-
vations in lipid content (e.g., triacylglycerols, free fatty acids,
sterols), reductions in posthatching body size, and poor survival
(Laurel et al., 2019). In developing Atlantic haddock (Melanog-
rammus aeglefinus), crude oil exposure disrupted yolk lipid uti-
lization and the biosynthesis of intrinsic cholesterol (Sørhus et al.,
2017). Disruptions of lipid utilization may result in the use of
protein and carbohydrate as alternative substrates, affecting their
concentrations. Increased oxygen consumption in developing
mahi‐mahi (Coryphaena hippurus) exposed to Deep water Ho-
rizon crude oil is possibly fueled by enhanced endogenous
protein catabolism (Pasparakis et al., 2016). Transcriptomic
studies in larval mahi‐mahi and red drum (Sciaenops ocellatus)
have shown that pathways involved in amino acid metabolism
and protein digestion are significantly altered following exposure
to Deep water Horizon crude oil (Xu et al., 2016, 2017).

As in the present study, effects on swimming in various
teleosts can occur at concentrations of TPAC as low as
0.23–200 µg/L (Hicken et al., 2011; Johansen & Esbaugh, 2017;
Kennedy & Farrell, 2006; Mager et al., 2014). Aberrant mo-
lecular responses, functional deficits, and morphological/
histopathological alterations during cardiogenesis (Alsaadi,
Madison, et al., 2018; Madison, Hodson et al., 2015; Madison
et al., 2017; McDonnell et al., 2019; see also Brette et al.,
2014; Incardona, 2017); remodeling in cardiac tissues

(A)

(C) (D)

(B)

FIGURE 7: Preexercise and postexercise whole‐body cortisol content and glycogen content in (A,B) swim‐up fry and (C,D) juveniles exposed to
dilbit. The initial total polycyclic aromatic compound concentrations for each water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and
124.5 (high) µg/L. Within each plot, indicates mean for n= 10 fish; boxes that do not share a common letter are statistically different (p< 0.05).
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(Alderman, Dindia et al., 2017; Alderman, Lin et al. 2017); and
disruptions to cardiovascular capacity (Johansen & Esbaugh,
2017; Nelson et al., 2017; Stieglitz et al., 2016) are often linked
to impaired swimming performance in fish exposed to dilbit. In
the present study, an induction of cyp1a in the heart was ob-
served in dilbit‐exposed swim‐up fry and juveniles, consistent
with cardiotoxicity as a driving mechanism for the observed
reductions in swimming performance.

Routine, sustained, and prolonged swimming are primarily
fueled by triglyceride oxidative metabolism in slow‐twitch red
skeletal muscle; and sprint/burst swimming is fueled by glyco-
lytic metabolism in fast‐twitch white muscle (Hammer, 1995;
Moyes & West, 1995). Elevations in whole‐body triglycerides in
exposed fish did not provide advantages in swimming per-
formance, and unchanged triglyceride content post‐Ucrit test
may reflect a decreased lipolytic capacity; a reduced lipid uti-
lization during the aerobic exercise and diminished carbohy-
drate availability for anaerobic bursting may underlie
impairment. Similarly, Avey et al. (2020) reported that Ucrit was
not affected in Atlantic salmon smolts exposed to water‐
soluble fraction of dilbit (up to 67.9 μg/L TPAC), but the fish
exhibited a reduced reliance on lipid metabolism for adenosine
triphosphate in the heart. Exposure to a lower water‐soluble
fraction concentration at 9.65 μg/L TPAC resulted in an in-
creased reliance on anaerobic metabolism in both cardiac and
red skeletal muscle (Avey et al., 2020). Burst swimming is al-
most exclusively fueled anaerobically through the utilization of

muscle glycogen, and reductions in Uburst may be directly at-
tributed to the lowered body glycogen stores seen prior to the
swim trial. A greater accumulation of lactate and depletion of
glycogen postexercise in fish exposed to dilbit suggest a
potentially enhanced anaerobic debt during burst swimming.

Dilbit exposure activated a physiological stress response,
followed by a short‐term hyperglycemic response similar to the
response induced by crude oil exposure; this has been attrib-
uted to the irritant properties of the lighter, more volatile, and
acutely toxic components of oil (e.g., naphthalenes, BTEX, and
naphthenic acids; Kennedy & Farrell, 2005, 2006; P. Thomas
et al., 1980). Cortisol elevation can reduce feeding and food
conversion efficiency (Gregory & Wood, 1999; Madison,
Tavakoli, et al., 2015) and may be responsible for the reduced
growth seen in the present study. Consistent with cortisol's key
role in mediating the peripheral mobilization of energetic
substrates during stress, stress may have resulted in the ca-
tabolism of body carbohydrate and protein (Milligan, 2003;
Mommsen et al., 1999). However, elevated cortisol generally
increases peripheral and hepatic lipolysis through increases in
lipase activity (Baltzegar et al., 2014), increased glycerol
utilization (Vijayan et al., 1991), and reductions in hepatic
lipogenic potential (López‐Patiño et al., 2014), which is not
consistent with the higher lipid and triglyceride content seen in
exposed fish that were stressed.

Exhaustive exercise resulted in increased circulating cortisol
concentrations, which did not increase over preexercise levels in

(A)

(C) (D)

(B)

FIGURE 8: Preexercise and postexercise whole‐body lactate and triglyceride content in (A,B) swim‐up fry and (C,D) juveniles exposed to dilbit. The
initial total polycyclic aromatic compound concentrations for each water‐soluble fraction were 0.2 (control), 13.7 (low), 34.7 (medium), and 124.5
(high) µg/L. Within each plot, indicates mean for n= 10 fish; boxes that do not share a common letter are statistically different (p< 0.05).
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response to exercise, data that are contrary to those seen in
other species acutely exposed to crude oil (Kennedy & Farrell,
2006; R. E. Thomas & Rice, 1987). Chronic exposure, however,
can cause a muted cortisol response following exercise (Kennedy
& Farrell, 2005, 2006). The main role of the cortisol‐induced
stress response is to supply an immediate energy source for fuel‐
intensive behaviors and physiological processes, and a deem-
phasized cortisol response can be considered maladaptive. Re-
peated pulse exposures to petroleum may cause hyperactivity
and exhaustion of cortisol‐producing cells (Hontela, 1997); act as
an endocrine disruptor, targeting pituitary or adrenocortical tis-
sues (Dorval et al., 2003) and affecting multiple sites in the
hypothalamic–pituitary–interrenal axis (Kennedy & Farrell, 2005);
or result in the necrosis of interrenal tissues (DiMichele &
Taylor, 1978).

CONCLUSIONS
Chronic exposure of sockeye to dilbit significantly reduced

survival and growth, impaired aerobic and anaerobic swimming
performance, and altered body biochemical composition as
well as cardiac gene expression, providing evidence that this
complex mixture likely has multiple targets, resulting in a
complex suite of toxicological outcomes. Dilbit release into the
natural habitat of Pacific salmon, under similar exposure sce-
narios, is likely to produce adverse effects that will affect the
viability and sustainability of local salmon populations.
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