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Abstract

A characteristic feature of the behavioural response to intensely acute or chronic stressors is a reduction in appetite. In Wsh, as in other
vertebrates, the corticotropin-releasing factor (CRF) system plays a key role in coordinating the neuroendocrine, autonomic, and behav-
ioural responses to stress. The following review documents the evidence implicating the CRF system as a mediator of the appetite-sup-
pressing eVects of stress in Wsh. Central injections of CRF or the related peptide, urotensin I (UI), or pharmacological treatments or
stressors that result in an increase in forebrain CRF and UI gene expression, can elicit dose-dependent reductions in food intake that are
at least partially reversed by pre-treatment with a CRF receptor antagonist. In addition, the appetite suppressing eVects of various envi-
ronmental, pathological, physical, and social stressors are associated with elevated levels of forebrain CRF and UI gene expression and
with an activation of the hypothalamic–pituitary–interrenal (HPI) stress axis. In contrast, although stressors can also be associated with
an increase in caudal neurosecretory system CRF and UI gene expression and an endocrine role for CRF-related peptides has been sug-
gested, the physiological eVects of peripheral CRF-related peptides on the gastrointestinal system and in the regulation of appetite have
not been investigated. Overall, while CRF and UI appear to participate in the stress-induced changes in feeding behaviour in Wsh, the role
of other know components of the CRF system is not known. Moreover, the extent to which the anorexigenic eVects of CRF-related pep-
tides are mediated through the hypothalamic feeding center, the HPI axis and cortisol, or via actions on descending autonomic pathways
remains to be investigated.
  2005 Elsevier Inc. All rights reserved. 
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1. Introduction

Recent advances in the Weld of comparative stress physi-
ology suggest that the corticotropin-releasing factor (CRF)
system in vertebrates plays a key role in regulating and inte-
grating the neuroendocrine, autonomic, immune, and
behavioural responses to stressors (Crespi and Denver,
2004; Heinrichs, 2005; Lovejoy and Balment, 1999). Pro-
gress on whole-genome sequencing projects has also shown
that the components of the CRF system in vertebrates are
highly conserved (Chang and Hsu, 2004). In Wsh, the CRF
system is comprised of four related neuropeptides, CRF
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(Okawara et al., 1988), urotensin I (UI; Lederis et al., 1982),
and orthologs of mammalian urocortin 2 and 3 (Chang and
Hsu, 2004; Lewis et al., 2001), two main receptor types,
CRF-R1 and -R2 (Arai et al., 2001; Chang and Hsu, 2004;
Pohl et al., 2001), and a binding protein, CRF-BP (Doyon
et al., 2005; Huising et al., 2004). While the CRF system in
Wsh is primarily known for its role in the control of the
hypothalamic–pituitary–interrenal (HPI) stress axis (Huis-
ing et al., 2004; Lederis et al., 1994; Wendelaar Bonga, 1997;
see review by Flik et al. in this volume), it has also been
implicated in several other physiological processes. Accu-
mulating evidence in a few teleost species suggest that
CRF-related peptides are involved in the autonomic regu-
lation of the cardiovascular system (see review by Le Mevel
et al. in this volume), the communication between the
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immune and neuroendocrine systems (VolkoV and Peter,
2004; Pepels et al., 2004a), the control of locomotor activity
(Clements et al., 2003, 2002; Clements and Schreck, 2004),
and the regulation of food intake—the focus of this review.

The control of food intake in Wsh (see reviews by De Pedro
and Bjornsson, 2001; Jensen, 2001; Le Bail and Boeuf, 1997;
Lin et al., 2000; VolkoV et al., 2005), amphibians (Carr et al.,
2002), birds (Denbow, 1999; Kuenzel et al., 1999), and mam-
mals (Berthoud, 2002), involves the detection and integration
of a complex mix of information by a distinct hypothalamic
neuronal circuitry. While several areas of the brain from the
telencephalon to the medulla are involved in the central con-
trol of feeding behaviour in Wsh, electrical stimulation of the
inferior lateral lobes in the hypothalamus evokes the most
consistent and low-threshold feeding responses (Demski,
1981, 1983; Peter, 1979). In general, the hypothalamic feeding
centre integrates peripheral signals related to gastrointestinal
content and energy reserves, sensory information such as
olfactory and gustatory cues, and central signals related to the
behavioural state of the animal including its perception of
immediate or chronic stressors (Berthoud, 2002; Woods et al.,
1998). In return the hypothalamus produces several orexigenic
(appetite-stimulating) and anorexigenic (appetite-inhibiting)
signals that regulate feeding responses via speciWc motor
pathways and modulate the processes of digestion, absorp-
tion, and metabolite utilization via several autonomic and
endocrine pathways (Kalra et al., 1999).

The appetite-suppressing eVects of intensely acute or
chronic stressors have been well documented across multi-
ple vertebrate lineages (Bernier and Peter, 2001a; Carr,
2002; Chrousos and Gold, 1992). In mammals, considerable
evidence suggests a role for the CRF system in appetite reg-
ulation and energy balance during conditions of threatened
homeostasis (Heinrichs, 2005; Heinrichs and Richard, 1999;
Richard et al., 2002; Zorrilla and Koob, 2005). Similarly,
the conserved eVects of CRF-related peptides on food
intake in birds (Denbow et al., 1999; Zhang et al., 2001),
amphibians (Carr et al., 2002; Crespi et al., 2004), and Wshes
(Bernier and Peter, 2001b; De Pedro et al., 1993), suggest
that the role of the CRF system in the control of food
intake maybe evolutionary conserved. Toward a synthesis
of the evidence implicating the CRF system in the regula-
tion of food intake in Wsh and as a means of highlighting
areas of research on the CRF system that have yet to be
explored in these animals, this paper will review: (a) the
eVects of CRF-related peptides on food intake; (b) the evi-
dence implicating CRF-related peptides as mediators of the
appetite-suppressing eVects of stressors; and (c) the interac-
tions of CRF-related peptides with other neuroendocrine
signals implicated in the regulation of food intake.

2. EVects of CRF-related peptides on food intake

2.1. Central eVects

Intracerebroventricular (icv) injections of CRF and UI
in goldWsh (Carassius auratus; Bernier and Peter, 2001b; De
Pedro et al., 1993), as in other vertebrates (Britton et al.,
1982, 1984; Crespi et al., 2004; Denbow et al., 1999; Krahn
et al., 1988; Zhang et al., 2001), elicit dose-dependent reduc-
tions in food intake. While central injections of the CRF-
related peptides urocortin 2 and 3 also have an inhibitory
action on food intake in rodents (Inoue et al., 2003; Pelley-
mounter et al., 2004) their eVects on the regulation of food
intake in Wsh are not known. In mammals, since the appe-
tite-suppressing eVects of CRF-related peptides can be
blocked with CRF-R2 but not CRF-R1 selective antago-
nists (Pelleymounter et al., 2000; Smagin et al., 1998), the
CRF-R2 subtype is thought to play a primary role in medi-
ating the anorectic eVects of CRF-related peptides (Rich-
ard et al., 2002). In Wsh, while the appetite-suppressing
eVects of icv CRF and UI are reversed by the speciWc but
non-selective CRF receptor antagonist, �-helical CRF(9–41)
(Bernier and Peter, 2001b; De Pedro et al., 1997), the CRF
receptor subtype(s) mediating the anorectic eVects of CRF-
related ligands have yet to be identiWed. Although icv UI is
signiWcantly more potent than CRF in reducing food intake
in goldWsh (Bernier and Peter, 2001b) and rats (Spina et al.,
1996), and these results are consistent with the binding pro-
Wle of UI and CRF at the mammalian CRF-R2 receptor
(Vaughan et al., 1995), evidence to date suggest that CRF-
R1 and -R2 in Wsh may not discriminate between CRF and
UI (Arai et al., 2001; Pohl et al., 2001). Results from experi-
ments using brain implants of �-helical CRF(9–41) also indi-
cate that endogenous CRF-related peptides in Wsh have
anorexigenic properties. Pre-treatment of goldWsh with the
CRF receptor antagonist reverses the reduction in food
intake induced by intraperitoneal implants of the glucocor-
ticoid receptor antagonist, RU-486, or the cortisol synthesis
inhibitor, metyrapone, pharmacological treatments that
elevate forebrain CRF and UI gene expression (Bernier and
Peter, 2001b).

The central sites of the anorectic actions of CRF-related
peptide in Wsh are not known. However, available evidence
suggests that likely appetite-regulating regions of the CRF
system in Wsh include the hypothalamic nucleus preopticus
(npo), nucleus lateralis tuberis (nlt), and nucleus recessus
lateralis (nrl; Fig. 1). In the catWsh brain (Arai et al., 2001),
CRF-R2 is expressed in the npo and nlt, two nuclei with
CRF-related peptide expression and immunoreactivity in
Wsh (Ando et al., 1999; Coto-Montes et al., 1994; Matz and
Hofeldt, 1999; Okawara et al., 1992; Olivereau and Olive-
reau, 1988a; Olivereau et al., 1984; Pepels et al., 2002; Yulis
et al., 1986; Zupanc et al., 1999) and regions where several
orexigenic and anorexigenic neuropeptides are expressed
(Cerda-Reverter and Peter, 2003; Cerda-Reverter et al.,
2003; Peng et al., 1994; Unniappan et al., 2004). The npo
and nlt are thought to be the teleostean homolog of the
mammalian paraventricular and arcuate nuclei, respec-
tively, two important cell groups known to contribute
extensively to the regulation of feeding (Berthoud, 2002;
Kalra et al., 1999). The nrl is also immunoreactive for CRF-
related peptides (Okawara et al., 1992; Olivereau and
Olivereau, 1988a; Pepels et al., 2002), is involved in relaying
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visceral and sensorial information in Wsh (Peter, 1979; Rink
and Wullimann, 1998; Yoshimoto et al., 1998), and electri-
cal stimulation of this nuclei is known to aVect feeding
behaviour (Demski, 1983).

In mammals, while several hypothalamic nuclei are pos-
sible loci for the anorectic actions of the CRF system
(Richard et al., 2002), central CRF-related peptides can
also aVect food intake by modulating the brainstem neuro-
nal circuitry involved in regulating gastrointestinal motor
functions. Icv CRF or urocortin 1 inhibit gastric emptying
by suppressing vagal activity (Kihara et al., 2001; Tache
et al., 1999) and stimulate colonic motility by activating the
sacral parasympathetic system (Tache et al., 2001).
Whether, central CRF-related peptides play similar roles in
Wsh is not known. However, CRF-R1 are expressed in the
brainstem of catWsh (Arai et al., 2001) and goldWsh (N.J.
Bernier, L. Wyngaarden, and R.E. Peter, unpublished
observations), and there is anatomical (Arai et al., 2001;
Batten et al., 1990; Pepels et al., 2002; Yulis et al., 1986) and
physiological (Mimassi et al., 2003, 2000) evidence suggest-
ing that CRF-related peptides in Wsh are involved in regu-
lating descending autonomic pathways.
2.2. Peripheral eVects

Although De Pedro et al. (1993) observed that intraperi-
toneal injections of ovine CRF do not aVect food intake in
goldWsh, the physiological eVects of peripheral CRF-related
peptides on the gastrointestinal system in Wsh have not been
investigated. However, unique features of the CRF system
in Wsh (Pepels et al., 2004b; Winter et al., 2000) and the
presence of plasma CRF (Pepels et al., 2004b) and UI
(Suess et al., 1986) suggest an endocrine role for circulating
CRF-related peptides (Fig. 1). The CRF system in all ray-
Wnned Wshes (Lovejoy and Balment, 1999), unlike other ver-
tebrates, possess a major source of CRF and UI that can
release its content to the circulation, the caudal neurosecre-
tory system (CNSS; Craig et al., 2005; Lu et al., 2004).
Moreover, in Acanthopterygii, the more derived bony
Wshes, CRF production in the lateral part of the ventral tel-
encephalon may also be a signiWcant source of circulating
CRF (Pepels et al., 2002, 2004b). To date, neither CRF-R1
nor -R2 appear to be expressed in the gut of catWsh (Ameiu-
rus nebulosus; Arai et al., 2001) or chum salmon (Oncorhyn-
chus keta; Pohl et al., 2001), but low levels of CRF-R1
Fig. 1. Central and peripheral pathways of the CRF system postulated to contribute to the appetite-suppressing eVects of stressors in rainbow trout. (A)
Schematic sagittal view depicting the relationship between the primary sites of CRF-related peptide expression in the forebrain, the npo, nlt, and nrl, the
hypothalamic-centered feeding neurocircuitry (¤), the CRF-related peptide Wbers that synapse with descending autonomic pathways, and the Wbers that
terminate in the pituitary. (B) Phase contrast micrograph of midsagittal section through the CNSS hybridized with an antisense DIG-labelled UI ribop-
robe. The UI gene expression pattern in the neurosecretory Dahlgren cells extends through the caudal most portion of the spinal cord. Nerve axons pro-
jecting from these cells and CRF-expressing Dahlgren cells project caudally through the urophysis terminating on capillaries that drain into the caudal
vein. (C) X-ray image of a trout fed a labelled diet and overlaid with a diagrammatic representation of the CNS, the interrenal cells in the headkidney, and
an outline of the gastrointestinal system. Stress signals are integrated by CRF-related peptide neurons in the forebrain and the CNSS. CRF-related pep-
tides of hypothalamic origin regulate pituitary ACTH secretion and ACTH drives cortisol synthesis and secretion from the interrenal cells. Cortisol may
impact food intake through its negative feedback eVects on forebrain CRF and UI and via actions on the gastrointestinal system. Finally, circulating CRF
and UI of CNSS origin may aVect food intake through direct actions on gastric and intestinal functions. Abbreviations: ACTH, adrenocorticotropic hor-
mone; Bs, brainstem; CNSS, caudal neurosecretory system; Cb, cerebellum; Cort, cortisol; CRF, corticotropin-releasing factor; Hy, hypothalamus; nlt,
nucleus lateralis tuberis; npo, nucleus preopticus; nrl, nucleus recessis lateralis; OB, olfactory bulbs; OT, optic tectum; T, telencephalon; UI, urotensin I;
Ur, urophysis. (B) Reprinted with permission from Craig et al. (2005).
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expression have been detected in the intestine of puVerWsh
(Fugu rubripes; Cardoso et al., 2003) and goldWsh (N.J. Ber-
nier, L. Wyngaarden, and R.E. Peter, unpublished observa-
tions). In contrast, peripheral CRF-related peptides in
mammals are known to contribute to the regulation of
appetite during stress via direct gastrointestinal actions
(Tache and Perdue, 2004). Urocortin 1, 2, and 3 are
expressed in the enteric nervous system and gastrointestinal
tract of rodents (Harada et al., 1999; Hsu and Hsueh, 2001;
Lewis et al., 2001; Kozicz and Arimura, 2002) and these
peripheral sources of CRF-related peptides play a role in
stress-related alterations of gut motility (Tache et al., 2001).
In general, peripheral administration of CRF-related pep-
tides inhibit gastric emptying and delay small intestinal
transit by activating CRF-R2 receptors, and stimulate
colonic motility by activating CRF-R1 receptors (Martinez
et al., 2002; Zorrilla et al., 2003).

3. CRF-related peptides as mediators of the appetite-
suppressing eVects of stressors

A variety of diVerent types of stressors suppress food
intake in Wsh (Bernier and Peter, 2001a; Schreck et al., 1997;
Wendelaar Bonga, 1997). This includes systemic stressors
such as environmental, pathological, or physical stressors
that are characterized by an immediate threat to homeosta-
sis, and processive stressors such as social subordination
and isolation that require sequential stimulus assembly and
interpretation by higher brain structures (Herman and
Cullinan, 1997). While systemic and processive stressors
involve the recruitment of separate stress-sensitive neuro-
circuitries, they both culminate in the activation of the
hypothalamic–pituitary adrenal axis and the secretion of
glucocorticoids (Herman et al., 2003). Similarly, most forms
of appetite-suppressing stressors in Wsh involve the recruit-
ment of the HPI axis and evidence from several recent stud-
ies now suggests that CRF-related peptides are implicated
in this behavioural response (Table 1).

3.1. Environmental stressors

Chronic exposure to hypoxia in Wsh is characterized by a
reduction in food intake (Buentello et al., 2000; Chabot and
Dutil, 1999; Pichavant et al., 2001; Zhou et al., 2001) and
recent evidence suggests that endogenous CRF-related pep-
tides contribute to the regulation of appetite under these
conditions (Bernier and Craig, 2005). In rainbow trout
(Oncorhynchus mykiss) exposed to 50 or 35% O2 saturation
for 24 h, preoptic area CRF and UI gene expression is posi-
tively correlated with the severity of the hypoxia-induced
appetite suppression. Most signiWcantly, CRF receptor
blockade with �-helical CRF(9–41) partially reverses the
reduction in food intake and prevents the increase in
plasma cortisol associated with exposure to 24 h 35% O2
saturation. Whether CRF-related peptides are also
involved in mediating the sustained anorexia that charac-
terizes chronic hypoxia in Wsh is less clear since the relation-
ship between the anorexic eVects of hypoxia and the
forebrain mRNA levels of CRF and UI breaks down after
72 h of hypoxia exposure (Bernier and Craig, 2005).

Correlative evidence between the forebrain mRNA
levels of CRF, UI, and food intake also implicates CRF-
related peptides as potential mediators of the appetite-sup-
pressing eVects of ammonia in Wsh (Ortega et al., 2005).
Although low levels of exogenous ammonia have no eVect
on food intake (Wood, 2004), above a certain species-spe-
ciWc threshold, chronic increases in water ammonia elicit an
initial dose-dependent reduction in food intake followed by
a gradual recovery (Beamish and Tandler, 1990; Ortega
et al., 2005; Wicks and Randall, 2002). Similarly, in rainbow
trout, chronic hyperammonemia elicits transient increases
in telencephalon CRF and UI mRNA levels, hypothalamus
UI mRNA levels, and plasma cortisol concentrations that
correspond with the transient nature of the appetite sup-
pression (Ortega et al., 2005).

Salinity is another environmental factor known to aVect
feeding in Wsh (De Boeck et al., 2000; Rubio et al., 2005)
and in several salmonid species, abrupt transfer from fresh
water (FW) to seawater (SW) is accompanied by a tempo-
rary decrease in food intake (Arnesen et al., 1993; McKay
and Gjerde, 1985; Usher et al., 1991). In rainbow trout, the
appetite-suppressing eVects of SW transfer are also associ-
ated with a signiWcant, but diVerential, up-regulation of
forebrain and CNSS CRF and UI gene expression (Craig
et al., 2005). More speciWcally, while SW transfer in trout
chronically suppressed food intake over a 2-week period, it
transiently increased CRF mRNA levels in the hypothala-
mus and preoptic region, and elicited a delayed increase in
hypothalamic UI mRNA levels and chronic elevations in
CNSS CRF and UI gene expression. Therefore, although
more direct evidence is needed, in addition to the proposed
osmoregulatory roles of the CRF system in Wsh (Lovejoy
and Balment, 1999), the above Wndings suggest that CRF
and UI may serve as regulators of food intake during the
response to osmotic stress.

3.2. Pathological stressors

Anorexia is a characteristic response in Wsh to a variety
of diVerent viral (Byrne et al., 1998; Damsgard et al., 1998),
bacterial (Damsgard et al., 2004; Pirhonen et al., 2000), and
parasitic (Chin et al., 2004) infections. This infection-
induced loss of appetite may represent an active defence
mechanism of the host as in many cases it has been shown
to reduce the severity of the disease and increase survival
(Damsgard et al., 1998; Li and Woo, 1991; Pirhonen et al.,
2003; Wise and Johnson, 1998). While little is known about
the neuroendocrine pathways that mediate the anorexic
state of diseased Wsh, there is indirect evidence suggesting
that CRF-related peptides may be implicated in this behav-
ioural response to pathological stressors. The increase in
plasma cortisol associated with the acute phase response of
many Wsh diseases (Damsgard et al., 2004; Mesa et al., 2000;
Olsen et al., 1992) suggest that central CRF-related
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peptide-producing neurons are recruited in the activation
of the HPI axis in response to the infection. Moreover,
injection of goldWsh with the Gram-negative bacteria-
derived endotoxin lipopolysaccharide (LPS) elicits a dose-
dependent decrease in food intake and an increase in
telencephalon, hypothalamus, and olfactory bulb CRF
mRNA levels (VolkoV and Peter, 2004). Similarly, in vivo
and in vitro LPS treatment in tilapia (Oreochromis mossam-
bicus) can modulate brain CRF content and release (Pepels
et al., 2004a).

An important pathway for the recruitment of CRF-
related peptides during disease-induced anorexia may
involve signalling by immune cells to the neuroendocrine
system. Infections such as those elicited by LPS stimulate
the production of various pro-inXammatory cytokines by
peripheral immune cells (Engelsma et al., 2002). Although
their eVects on the CRF system in Wsh have not been deter-
mined, some of these immune cytokines, such as interleu-
kin-1�, activate the HPI axis in Wsh (Holland et al., 2002)
and stimulate the expression of hypothalamic CRF in
mammals (Dunn, 2005).

Given the role of CRF-related peptides as mediators of
the appetite-suppressing eVects of hypoxia in Wsh (Bernier
and Craig, 2005; see Section 3.1 above), the severe anaemia
that characterizes some Wsh diseases (e.g., Mesa et al., 2000;
Olsen et al., 1992; Woo, 2003) may also be a key factor
involved in the recruitment of CRF-related peptide-pro-
ducing neurons during disease-induced anorexia. For
example, in Wsh infected by the protozoan hemoXagellate
Cryptobia salmositica, the onset of anorexia coincides with
a signiWcant rise in parasitemia and severe anaemia (Chin
et al., 2004). A metalloprotease produced by the pathogen
Table 1
Stressors in Wsh where a reduction in food intake has be associated with an activation of the CRF system and/or a recruitment of the hypothalamic–pitui-
tary–interrenal axis as reXected by changes in plasma cortisol

Abbreviations used: CNSS, caudal neurosecretory system; CRF, corticotropin-releasing factor; FW, fresh water; HYP, hypothalamus; LPS, lipopolysac-
charide; POA, preoptic area; SW, seawater; TEL, telencephalon; UI, urotensin I.

a Bernier and Craig (2005).
b Ortega et al. (2005).
c Craig et al. (2005).
d VolkoV and Peter (2004).
e Haukenes and Barton (2004).
f McCormick et al. (1998).
g Pickering et al. (1982).
h Doyon et al. (2005).
i Huising et al. (2004).
j Overli et al. (1998).

k Doyon et al. (2003).
l Overli et al. (2002).

Stressor EVect on feeding EVect on CRF system EVect on plasma cortisol

Environmental
Hypoxia Sustained decreasea Transient increase in POA CRF and 

UI mRNA levelsa
Sustained increasea

Ammonia exposure Transient decreaseb Region-, dose-, and time-dependent 
increase in forebrain CRF and UI mRNA levelsb

Transient increaseb

FW to SW transfer Sustained decreasec Transient increase in POA and HYP CRF,
delayed increase in HYP UI, and sustained 
increase in CNSS CRF and UI mRNA levelsc

Transient increasec

Pathological
LPS challenge Rapid decreased Increase in HYP and TEL CRF mRMA levelsd Transient increasee

Physical
Chasingf,h Sustained decrease 

after daily physical 
disturbance for 42 daysf

Decrease after daily physical 
disturbance for 42 daysf

Restraintf,g,i Transient decrease after 
physical disturbance for 
2 ming

Transient increase 2 h after 
physical disturbance for 2 ming

Handlingg Increase in POA CRF mRNA levels 6 h after 
repeated chasingh

Increase 6 h after repeated chasingh

Increase in HYP CRF mRMA levels after 
24 h restrainti

Increase after 24 h restrainti

Social
Subordination Sustained decreasej Increase in POA CRF mRNA levels after 

72 h interactionk
Increase after 72 h interactionk

Isolation Sustained decreasel Transient increase in POA CRF mRNA levels 
with isolation in 120 L tanks; sustained increase 
in POA CRF mRNA levels with isolation in 1.5 L tanksh

Transient increaseh
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lyses circulating erythrocytes (Zuo and Woo, 2000) reduc-
ing the oxygen carrying capacity of the infected Wsh and
making them more susceptible to environmental hypoxia
(Woo and Wehnert, 1986).

3.3. Physical stressors

Single or repeated physical disturbances such as chasing
to exhaustion, handling, or restraint by netting are associ-
ated with reductions in food intake in diVerent Wsh species
(McCormick et al., 1998; Pickering et al., 1982). In general,
the extent to which feeding is inhibited by physical stressors
depends on the severity of the disturbance (Schreck et al.,
1997). Similarly, in common carp (Cyprinid carpio) and
rainbow trout, the intensity and duration of a physical
stressor are important factors in determining the magni-
tude of the changes in CRF gene expression (Doyon et al.,
2005; Huising et al., 2004). In carp, while a 30 min restraint
period had no eVect of hypothalamic CRF mRNA levels,
24 h of restraint was associated with a signiWcant increase in
the expression of this transcript (Huising et al., 2004). Simi-
larly, although a single chasing event does not aVect CRF
mRNA levels in rainbow trout, repeated chasing to exhaus-
tion leads to an increase in preoptic area CRF mRNA lev-
els (Doyon et al., 2005). Overall, while the results from the
above studies suggest that appetite-suppressing eVects of
physical stressors in Wsh may be associated with an increase
in forebrain CRF gene expression, a direct link between
CRF-related peptides and the regulation of feeding follow-
ing physical disturbances remains to be made.

3.4. Social stressors

As evidenced by elevated plasma cortisol and ACTH
levels (Hoglund et al., 2000), increased expression of the
ACTH precursor pro-opiomelanocortin in the pituitary
(Winberg and Lepage, 1998) and CRF mRNA levels in the
proptic area (Doyon et al., 2003), social subordination in
salmonids is associated with a chronic activation of the
HPI axis (see review by Gilmour et al., 2005). Social subor-
dination in these Wsh is also characterized by a marked
reduction in food intake (Winberg et al., 1993). Although
dominants can monopolize food, the appetite inhibition in
subordinate Wsh is not merely the result of interference
competition from dominants. Instead, the subordination-
induced anorexia appears to be mediated by speciWc brain
serotonergic neuronal circuits (Overli et al., 1998). Whether
the appetite-inhibitory eVects of the serotonergic system in
subordinates also involve CRF-related peptide neurons is
not known, however, physiological and anatomical evi-
dence suggests interactions between the serotonergic and
CRF systems in Wsh (see Section 4 below). Other social
stressors in Wsh, such as isolation and conWnement, have
also been associated with increases in preoptic area CRF
mRNA levels (Ando et al., 1999; Doyon et al., 2005) and
reductions in appetite (Overli et al., 2002). Studies are now
needed to establish whether there is a causal relationship
between the increase in CRF mRNA levels and the appe-
tite-suppressing eVects of these processive stressors.

4. Interaction between CRF-related peptides and other 
appetite regulators

Both stress-responsive and appetite-regulating neuronal
circuits are known to synapse onto CRF-related peptide
neurons in mammals (Herman et al., 2003; Itoi et al., 2004;
Ueta et al., 2003). Similarly, a variety of diVerent inputs
appear to converge on CRF neurons in Wsh. For example,
in tilapia (Oreochromis mossambicus) noradrenaline (NA)
and serotonin (5-HT) stimulate in vitro CRF release from
telencephalic tissues (Pepels et al., 2004a). In goldWsh, the
CRF receptor antagonist, �-helical CRF(9–41), partially
blocks the inhibitory eVects of icv 5-HT on food intake (De
Pedro et al., 1998), and increased levels of GABA stimulate
telencephalic CRF gene expression (Martyniuk et al., 2005).
Anatomical evidence also suggests interactions between the
stress-responsive serotonergic and noradrenergic cuircuits
and the CRF system in Wsh. Serotonergic cell bodies mainly
located in the raphe nuclei but also in cell bodies found in
several hypothalamic nuclei contribute Wbers to the preop-
tic region and to the hypothalamic inferior lobe (Franken-
huis-van den Heuvel and Nieuwenhuys, 1984; Meek and
Joosten, 1989; Parent, 1983; Terlou et al., 1978). NA-immu-
noreactive cell bodies located in the locus coeruleus and the
brainstem also innervate the preoptic region (Meek, 1994).

Other than correlative evidence between neuropeptide Y
(NPY) and CRF gene expression in subordinate rainbow
trout (Doyon et al., 2003), the possible involvement of
anorexigenic and orexigenic peptidergic inputs in the regu-
lation of the CRF system in Wsh has not been investigated.
In contrast, in the brain of domestic fowl, CRF neurons
mediate at least a portion of the anorexigenic eVects of
pituitary adenylate cyclase-activating polypeptide
(PACAP), vasoactive intestinal peptide (VIP), bombesin,
and ghrelin (Meade and Denbow, 2003; Saito et al., 2005;
Tachibana et al., 2004). Similarly, in rats, NPY (Heinrichs
et al., 1993), orexin (Jaszberenyi et al., 2000), prolactin-
releasing peptide (PrRP; Lawrence et al., 2004), bombesin
(Kent et al., 1998), glucagon-like peptide 1 (GLP-1; Larsen
et al., 1997), galanin (Hooi et al., 1990), cocaine- and
amphetamine-regulated transcript (CART; Tebbe et al.,
2004), and leptin (Okamoto et al., 2001) exert at least a por-
tion of their eVects on feeding via interactions with CRF
neurons. In contrast, some hypothalamic feeding regulatory
factors, for example melanocortins, mediate the appetite-
suppressing eVects of stressors independently of CRF-
related peptides (Vergoni and Bertolini, 2000).

Cortisol, the end product of HPI axis activation in Wsh
(Barton and Iwama, 1991), is also involved in the regula-
tion of food intake. By virtue of its negative feedback eVects
on forebrain CRF and UI (Bernier et al., 1999; Fryer and
Peter, 1977; Olivereau and Olivereau, 1988b), cortisol may
counteract the appetite-suppressing eVects of CRF-related
peptides (Bernier and Peter, 2001b). However, there is also
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evidence suggesting that other neuroendocrine pathways
mediate the eVects of cortisol on food intake. In goldWsh,
for example, while moderate chronic increases in plasma
cortisol stimulate food intake, decrease CRF and increase
NPY forebrain expression, larger catabolic doses of cortisol
decrease CRF mRNA levels but have no eVect on food
intake or NPY gene expression (Bernier et al., 2004). Simi-
larly, in rainbow trout, although moderate increases in
plasma cortisol over a 6-day period can stimulate self-feed-
ing activity relative to sham-injected Wsh (Lyytikainen and
Ruohonen, 2001), more pronounced elevations in plasma
cortisol suppress feed intake (Gregory and Wood, 1999).
Chronic catabolic doses of cortisol also decrease feed
intake in channel catWsh (Ictalurus punctatus; Peterson and
Small, 2005). Overall, multiple interactions between cortisol
and other central and peripheral appetite-regulating signals
are likely to contribute to the dose-dependent and complex
eVects of cortisol on food intake. Finally, while few studies
have assessed the speciWc actions of cortisol on food
absorption (Collie and Ferraris, 1995; Collie and Stevens,
1985), the presence of glucocorticoid receptors in the gas-
trointestinal tract of Wsh (Ducouret et al., 1995), the stimu-
latory eVects of cortisol on intestinal Na+–K+-ATPase
activity (Veillette and Young, 2005), and the negative eVects
of cortisol on circulating triiodothyronine (T3) levels
(Brown et al., 1991), all suggest that glucocorticoids may
directly or indirectly aVect appetite through actions on
intestinal nutrient uptake.

5. Concluding remarks

Compelling evidence for a role of CRF-related peptides
in the regulation of appetite in Wsh comes from the demon-
stration that icv injections of CRF and UI are potent
anorexigenic signals and from the observation that CRF
receptor antagonists can reverse the appetite-suppressing
eVects of speciWc stressors (Bernier and Craig, 2005; Bernier
and Peter, 2001b). However, given the stimulatory actions
of icv CRF on locomotor activity (Clements et al., 2002;
Lowry et al., 1996), it is also possible that at least a portion
of the anorexigenic eVects of CRF-related peptides are due
to behavioural responses that are not mediated through the
hypothalamic feeding center. Therefore, to further support
the physiological relevance of CRF-related peptides in the
regulation of appetite in Wsh, experiments are needed to
determine whether CRF receptor antagonists can modulate
the orexigenic or anorexigenic eVects of other appetitive
neuropeptides.

Similarly, research is needed to determine whether cen-
tral or peripheral CRF-related peptides mediate some of
the appetite-suppressing eVects of stressors in Wsh via
actions on the gastrointestinal system. Finally, an under-
standing of the speciWc contributions of CRF-R1, CRF-R2,
CRF-BP, and of the novel urocortin-related peptides to
feeding control is also needed before the true functional sig-
niWcance of the CRF system in the regulation of appetite in
Wsh can be determined.
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