Using ecology to inform physiology studies: implications of high population density in the laboratory

Amy E. M. Newman, Nicholas B. Edmunds, Shannon Ferraro, Quentin Heffell, Gillian M. Merritt, Jesse J. Pakkala, Cory R. Schilling, and Sarah Schorno

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada

Submitted 11 August 2014; accepted in final form 9 January 2015

Newman AE, Edmunds NB, Ferraro S, Heffell Q, Merritt GM, Pakkala JJ, Schilling CR, Schorno S. Using ecology to inform physiology studies: implications of high population density in the laboratory. Am J Physiol Regul Integr Comp Physiol 308: R449–R454, 2015. First published January 14, 2015; doi:10.1152/ajpregu.00328.2014.—Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment.

body condition; ecophysiology; glucocorticoids; immune function; stress

“I would rather sit on a pumpkin and have it all to myself, than be crowded on a velvet cushion”

– H. D. Thoreau

RESEARCH USING MODEL ORGANISMS in the laboratory is ubiquitous, and the results from these experiments are often translational, with the goal of applying findings to free-living animals and humans. In the wild, the ecological importance of density-dependence is well established; however, the effect of animal density on physiological studies in the laboratory is vastly underappreciated. Notably, lab and field conditions differ in many respects; for example, food availability is often considered to drive density-dependence in the wild, albeit lab animals are typically fed ad libitum. Nonetheless, a recent field experiment using Tamiasciurus hudsonicus (American red squirrel) successfully separated the ecological effects of density and resources, demonstrating that even in the absence of resource limitation, high density can significantly influence physiology in natural populations (26). Considering the ecological parameters under which experimental animals are maintained may be crucial in understanding how physiological results reported in lab studies can be translated to organisms living under natural conditions.

Here, using a examples from the literature across three taxa (birds, fish, and mammals), we highlight the pervasive correlation between high density and specific physiological parameters, and we emphasize the tendency to overlook animal density in lab studies (Fig. 1 and Supplemental Table S1). Finally, via two case studies of traditional captive animal systems, we demonstrate that even when density is considered, the ecological parameters of the experimental paradigms (e.g., animal density) do not reflect natural conditions and, thus, findings are difficult to interpret. We synthesize the physiological effects of density with the goal of illuminating a critical ecophysiological gap and to demonstrate the feasibility and importance of including density-dependent factors in experimental design and interpretation.

Literature Investigation

Using a systematic survey of the recent physiological literature, we quantified the extent to which animal density is overlooked in physiological studies. We ran a literature search using the citation database PubMed in October 2014 using the following search terms: [(Title/Abstract]Glucocorticoid OR “body condition” OR “immune function”) AND [(Title/Abstract]bird OR avian OR fish OR rat OR mouse OR hamster NOT [(All fields]wild)] to examine the most recent 400 manuscripts in 2014. Of the 400 manuscripts, 80 were physiological studies on one of the three primary physiological parameters we assess in our review (glucocorticoid levels, body condition, and immune function); see Supplemental Table S1 for details on each study. We document that nearly 80% of studies do not report animal density either before (i.e., rearing/housing density) or during the experiment, and only 2.5% report density before and during the experiment
Physiological Impacts of High Density

For housing does not appear to exist. An important factor that is overlooked, but a "standard condition" number of cages or animals per room. Not only is animal density number of animals housed per cage, and there is no mention of the number of animals per cage and the dimensions of the cage (17/80 yet our survey revealed that even when studies do report the reported density. In fact, most studies report that animals were purchased from a supplier and "housed in standard conditions", reported density. In fact, most studies report that animals were reported animal density during the experiment (but not before), including both the number of animals per enclosure and enclosure dimensions. Also, see Supplemental Table S1.

(Fig. 1). In some cases (23/80: 28.75%), the authors reported the number of animals per cage during experimentation, but did not provide cage dimensions. Not surprisingly, most studies were using rodent models (mouse: 29/80; rat: 38/80), yet there appears to be an interesting bias in that mouse-based studies are the least likely to report animal density (1/29 reported density during the study), whereas 9/38 studies using rats reported density, 2/6 studies using birds reported density, and 5/7 studies using fish reported density. In fact, most studies report that animals were purchased from a supplier and “housed in standard conditions”; yet our survey revealed that even when studies do report the number of animals per cage and the dimensions of the cage (17/80 papers), the size of the cage varies across studies, as does the number of animals housed per cage, and there is no mention of the number of cages or animals per room. Not only is animal density an important factor that is overlooked, but a “standard condition” for housing does not appear to exist.

Physiological Impacts of High Density

Glucocorticoids. One mediator of stress, or allostatic load (60), is the hypothalamic pituitary adrenal (HPA) axis and the associated release of glucocorticoids (GCs). Increases in GCs are known to alter vertebrate behavior and physiology and can have profound effects on individual fitness (e.g., 89, 93). It is worth noting that the relationship between HPA axis dynamics and fitness is complicated and there are inconsistent findings among studies on wild animal systems (9, 11). Nonetheless, population density, and the associated conspecific interactions and competition, also affects GC levels (24, 26), and these effects are evident across taxa and experimental paradigms. Many field studies report a positive correlation between population density and GC levels. This was the case for wild populations of Tamiasciurus hudsonicus (American red squirrel; Ref. 26) Microtus pennsylvanicus (meadow voles; Ref. 10), and Rhombomys opimus (Midday gerbils; Ref. 88). Furthermore, simulated territorial intrusions, which temporarily increase perceived local density, increase GC levels in a variety of wild bird species (51, 70, 104); also in captive Sturnus vulgaris (European starlings), several studies report an increase in GCs and cardiovascular stress response in intruders (30, 69). In captivity, some lab studies have reported effects of density, albeit they are uncommon. For example, studies on captive Mus musculus (house mice) (78), Rattus norvegicus (Wistar rats) (14), and wild-caught Peromyscus leucopus (white-footed mice) report positive relationships between cage density and GC levels (102). There is also strong evidence from studies on Gallus gallus domesticus (chickens) that plasma GCs increase at higher cage densities (27, 59, 73) and likely play a role in lower egg quality from stressed hens (27, 74). Likewise, in cultured fish species, high stocking density was shown to elevate circulating GCs (2, 38).

Immune function. The tightly woven relationship between the immune system and HPA axis suggests that high population densities, and the resulting increased GC levels, can influence immune function (28, 41, 68, 88, 95). Further, the number of neighbors in a population increases, so too does the spread of pathogens and the outbreak of disease (18, 95). This increased allocation of physiological resources to antipathogen defense can have negative impacts on survival, reproduction, and fitness (18, 65). Measures of immune defense range widely across studies and taxa (e.g., 41, 66, 68); thus, we refer generally to “immune function” for this review.

Immune function varies across vertebrate life-history stages and seasons, often in parallel to local conspecific density. For example, altricial nestlings are typically more vulnerable to immune challenges than their adult counterparts, in part, due to nest confinement and close association with nest-mates (66, 94, 97). Similarly, adult individuals, such as Myodes glareolus (Bank voles), show reduced immune function during the breeding season (high population density) compared with other seasons of relatively low population density (91). Even wild animals adapted to living at high population densities, such as colonial birds and cooperative breeding mammals, experience increases in individual pathogen loads and impaired immune function that can also reduce offspring immune defense (5, 13, 65). For instance, Spheniscus magellanicus (Magellanic penguin) and Rhombomys opimus (Greater gerbils) show greater social stress and impaired immune function in high population densities because of increased social contact (12, 88, 96). Finally, captive studies investigating the effects of social crowding on laboratory mice, farmed chickens, and farmed fish, also report a negative relationship between density and immune function (29, 34, 41, 44, 108).

Body condition. Although widely used, the term body condition is not often explicitly defined. Broadly, it is used to refer to the physical condition of an animal, frequently with reference to protein or fat reserves (20, 31, 63); here, we also include body mass and growth to allow for a more comprehensive analysis of density-dependent effects on physical condition.

Controlled laboratory experiments have revealed that generally, higher population densities result in decreased body condition across taxa. The relationship between body condition and population density is one that is highly studied in fish due to the implications for aquaculture stocks. Stocking experiments of Barbodes gonionotus (Java barb; Ref. 37), and Etroplus suratensis fingerlings (Pearlspot; Ref. 7), revealed that diminished stocking densities yielded fish with comparably
better growth profiles. This trend has been observed in the majority of laboratory fish studies, including *Oreochromis niloticus* L. (Nile tilapia; Ref. 35) *Gadus morhua* L. (Atlantic cod; Ref. 56), and *Oncorhyncus mykiss* (rainbow trout; Ref. 76). Captive mammal experiments have presented similar findings. Rabbits caged at lower densities showed higher body weights and heightened daily weight gain (75), and sheep maintained at lower population density birthed lambs with better body condition, as well as higher weight gain rates (64). The results are similar for laboratory colonies of *Taeniopygia guttata* (zebrafinch), where birds housed at low density gained more mass and produced a higher number of heavier offspring than those housed at high density (82).

Field studies in fish, mammals, and birds have found negative relationships between relative abundance and body condition, though are confounded by relative decreases in food availability. Experiments on wild *Pterois volitans* (red lionfish) revealed a linear decrease in body length, and an exponential decrease in body weight after a manipulated population increase (4). Similarly, young *Sardinops melanosticta* (Japanese sardine; Ref. 45) and *Salmo salar* (Atlantic salmon; Ref. 43) showed negative relationships between body size and density. Further, several mammalian species, including *Aquus asinus* (feral donkey; Ref. 20), *Arctocephalus forsteri* (fur seal; Ref. 8), *Capreolus capreolus* (roe deer; Ref. 32), and *Lynx canadensis* (lynx; Ref. 109), have decreased body condition under high-population density conditions. This trend has also been recognized in wild birds such as *Larus audouini* (Audouin’s gulls; Ref. 90), *Anser caerulescens atlanticus* (snow goose; Ref. 85), *Stercorarius parasiticus* (Arctic skua; Ref. 80), *Spheniscus magellanicus* (Magellanic penguins; Ref. 96), and *Branta bernicla nigricans* (Black Brant geese; Ref. 92).

Implications of density for lab experiments: two case studies. Scientists have long used lab animals to investigate complex hypotheses across the physiological and biomedical fields. Prior to experimentation, these animals are typically reared and/or housed in captive colonies for which population density is often neither reported, nor is density routinely considered during experimentation (Fig. 1). Understanding the ecological parameters for lab animals and the implications on individuals may be critical in translating results to free-living organisms. Calisi and Bentley (16) also allude to the important differences between laboratory and field studies in their poignant review, where they highlight a number of incidences across vertebrate taxa, where the results from the laboratory differ from their field counterparts; however, the influence of density has not yet been addressed.

Lab Mouse

Although the great majority of laboratory studies do not report the population density of mouse colonies, several experiments have looked directly at the impact of cage density on physiological outcomes and highlight the importance of considering animal density. Laboratory studies reveal that mice show a consistent decrease in reproductive output at high population density, which has been attributed to smaller reproductive organs, decreases in fecundity, and the inhibition of juvenile maturation (21–23, 25, 56, 88, 98–101).

Glucocorticoids, immune function, and body condition are three possible mechanistic links between high population density and decreased fitness. Laboratory studies clearly show that as cage density increases, GCs increase, while immune function and body condition decrease [(GCs: Refs. 42, 78, 102) (immune function: Refs. 34, 78, 102) (body condition: Ref. 1)]. Many of the early lab studies were criticized, as the experiments were only performed on captive mice (48, 55), albeit subsequent field studies on wild mice found that as population density increases reproductive output decreases (34, 58, 67, 101) and GCs generally increase (46); however, more field research is required to understand the effect of density on immune function and body condition and to determine whether laboratory results are biologically relevant to wild populations.

Despite the studies mentioned above, densities experienced by lab mice are extremely high compared with natural populations. The home range for a wild mouse ranges from 1000 m² to 7500 m² depending on the species (62). The average cage size for lab mice is ~0.05 m² with up to eight mice per cage to simulate high density, affording each mouse ~1/20,000th of its natural area. This ecological discrepancy may explain some phenomena observed only in laboratory populations, such as the Bruce Effect, which is a pregnancy disruption where a female will absorb/abort her fetus when introduced to an unknown male. The Bruce Effect has been reported for at least 12 species in the laboratory, including several species of mice but has never been observed in the wild (reviewed in Ref. 107). Laboratory artifacts such as this highlight the potential difficulty in interpreting results in the absence of ecologically relevant population densities.

Rainbow Trout (*Oncorhyncus mykiss*)

Aquaculture science is an ecologically and economically important applied version of highly controlled lab studies on captive animals. *O. mykiss* is one of the most commonly farmed freshwater species, and although a vast amount of effort is invested in elevating stocking density (SD) to maximize yield, there are well-described negative effects of high SD on physiology and fitness. For example, high SD is related to elevated plasma GCs (81) and altered HPA axis responsivity to acute stressors (83), and it is associated with indices of chronic stress, such as increased brain serotonergic activity (53). Further, it has been shown that repeated acute stress can reduce *O. mykiss* gamete quality, leading to decreased survival rates of progeny (17).

The effects of SD on *O. mykiss* body condition also reveal consistent negative consequences of high density. Specific growth rate, often correlated with reductions in food conversion efficiency, decreases with increasing SD (52, 61, 103), and body condition factor and hepatosomatic index, used as proxies for nutritional status, also decrease at high SD (54, 79). In the majority of these studies, fish were fed ad libitum to ensure differences among density groups were not caused by food shortages. Unfortunately, reports of *O. mykiss* immune function are both scarce and inconsistent (e.g., 46, 71, 81), highlighting the necessity to better understand density-dependent effects on farmed fish physiology.

Like lab mice, farmed *O. mykiss* are kept at astonishingly high densities compared with the natural environment. While measures of natural fish density are notoriously difficult to obtain given the three-dimensional underwater environment, density estimates for natural Alaskan populations of *O. mykiss* (>25-cm fork length) range from 1.4 fish/ha to 50.5 fish/ha.
breeding densities in Icterids (blackbirds; Ref. 3), and Char-
that these trends do not apply across species, carte blanche. For
logical measures and decreased fitness, we do acknowledge
iology and fitness are being made using invertebrate models in
taxa, important advances in density-dependent effects on phys-
animal’s housing density throughout its life history.

Perspectives and Significance

This review highlights a critical gap in physiology: the potential for population density to have profound influences on physiological experiments using captive populations is under-
prefec ted. To increase applicability of laboratory results to
free-living animal and human physiology, we propose several
pecific directives. 1) Although logistically difficult, if not
largely impossible given current infrastructure, ideally, popu-
ulation density of lab animals should reflect natural population
densities. It is worth considering that we would not conduct
clinical trials on humans confined to similar conditions that we
do lab mice and expect the results to be broadly meaningful to
the public at large. 2) When this is not feasible, as is often the
case due to a range of logistics, the effects of density should be
experimentally evaluated, such that treatment groups from a
range of densities be compared, so that one can either confirm
that density is an important factor, or to be confident in ruling
it out in related experiments. 3) Not only is intracage density
important, but the number of cages per experimental room
should be a factor as animals in the room are interacting via
scent and vocalizations. 4) While design considerations are
extensive for new or renovated lab space, similar consider-
ations of space and design should be granted to researchers in
designing animal facilities, both for independent principal
investigators and also for collective vivaria that serve multiple
researchers and their respective simultaneous experiments. 5)
Finally, density should be accounted for in a statistical manner
during data analysis, emphasizing the responsibility of suppli-
ers to make available the specific information regarding the
housing density and ecological parameters of their stock pop-
ulations. Experimental results may be inherently affected by
the ecological conditions of the animal prior to and during experimen-
tation and a substantial degree of the variation around physiological measurements may be explained by the
animal’s housing density throughout its life history.

While we focus on evidence from a variety of vertebrate
taxa, important advances in density-dependent effects on phys-
ology and fitness are being made using invertebrate models in
the laboratory (6). Also, although there is substantial evidence for a relationship between high-density, compromised physi-
ological measures and decreased fitness, we do acknowledge
that these trends do not apply across species, carte blanche. For
example, circulating GCs were not correlated with higher
breeding densities in Icterids (blackbirds; Ref. 3), and Char-
bonnel et al. (19) report in wild populations of Articola scherman (fossorial water voles) an inverse relationship be-
tween density and GCs when compared across two years.
Further, there are several lab studies that describe the relation-
ship between social isolation, or being singly housed, and
increased GC levels, compromised immune function, and de-
creased body condition (e.g., 49). Further, phenomena such as
the “Allee Effect” can have physiological consequences at very
low densities. Importantly, in Melospiza melodia (song spar-
rows), the ability to respond to a novel immune challenge
decreases with homozygosity and corresponding low popula-
density (72, 86). Furthermore, the negative relationship
between high population density and decreased body condition
is not universal, with high density promoting better body
condition in Lepomis gibbosus (pumpkinseed sunfish; Ref. 39),
Dicentrarchus labrax (European seabass; Ref. 77), and Salve-
linus alpinus (Arctic char; Ref. 105).

Another important consideration that we do not address here
detail is that the effect of animal density on physiology may
be sex-specific. When designing studies and interpreting re-
results, it is critical to consider that males and females may
differentially respond to environmental and experimental con-
ditions. In some cases, males and females respond similarly to
population density (e.g., wild mice; Ref. 40), while in other cases,
the sex difference can be profound (e.g., 47, 84, 106) and
dependent on the sex of conspecifics in the same enclosure.

In closing, we hope to stimulate discussion and awareness
around the influence of animal density on experimental design
and outcome. It is clear that density plays an important role in
shaping animal behavior and physiology and should be con-
sidered as a key parameter in physiological studies.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

Author contributions: A.E.N., N.B.E., S.F., Q.H., G.M.M., J.J.P., C.R.S., and S.S. conception and design of research; A.E.N., N.B.E., S.F., Q.H.,
G.M.M., J.J.P., C.R.S., and S.S. drafted manuscript; A.E.N. edited and revised
manuscript; A.E.N. approved final version of manuscript.

REFERENCES

1. Anderson A, Werboff J, Les EP. Effects of environmental temperature-
humidity and cage density on body weight and behavior in mice.
2. Barcellos LJG, Nicolaiewsky S, De Souza SMG, Lulhier F. The effects of stocking density and social interaction on acute stress response in Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquaculture 30:
to territoriality, breeding density and parental behavior in male yellow-
4. Benkwitt CE. Density-dependent growth in invasive lionfish (Pterois
5. Begen M, Harper JL, Townsend CR. Ecology: Individuals, Popula-
6. Betini GS, Griswold CG, Norris DR. Density-mediated carry-over
AG. Effects of stocking density and presence or absence of sail base on growth, weight variation survival and body composition of pearlspot,

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00328.2014 • www.ajpregu.org

42. Kleszczyńska A, Kuleszkowska E. Stress density influences brain arginine vasotocin (AVT) and isotocin (IT) levels in males and females of three-spined stickleback (Gasterosteus aculeatus). Gen Comp Endocrin 183: 14–16, 2013.

47. Larsen BK, Skov PV, McKenzie DJ, Jokumsen A. The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19°C. Aquaculture 324: 226–233, 2012.

